

SQUARE AND CUBE ROOTS

SQUARE ROOTS

When we SQUARE a number, we raise it to the power of 2.

EXAMPLE: 3^2 (Read aloud as "three squared.") $3^2 = 3 \times 3 = 9$

The opposite of squaring a number is to take a number's **SQUARE ROOT**. The square root of a number is indicated by putting it inside a RADICAL SIGN, or $\sqrt{}$.

EXAMPLE: $\sqrt{16}$ (Read aloud as "square root of 16.") $\sqrt{16} = \sqrt{4 \times 4} = 4$ and $\sqrt{16} = \sqrt{-4 \times -4} = 4$

When simplifying a square root, ask yourself, "What number times itself equals the number inside the radical sign?"

Perfect Squares

I'M PERFECT!

√16 is also a PERFECT SQUARE, which is a number that is the square of an integer.

When you find the square root of a perfect square, it is a positive or negative whole number—in this case ± 4 . The \pm means "positive or negative" $(4 \cdot 4 = 16)$ and $-4 \cdot -4 = 16)$.

EXAMPLE: 4 is a perfect square.

$$\sqrt{4} = \pm 2$$
 (2 • 2 = 4 and -2 • -2 = 4)

EXAMPLE: 1 is a perfect square.

$$\sqrt{1=\pm 1}$$
 (1 • 1 = 1 and -1 • -1 = 1)

EXAMPLE: $\frac{1}{4}$ is a perfect square.

$$\sqrt{\frac{1}{4}} = \pm \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \text{ and } -\frac{1}{2} \cdot -\frac{1}{2} = \frac{1}{4} \right)$$

If a number under the radical sign is NOT a perfect square, it is an irrational number.

EXAMPLE: $\sqrt{7}$ is irrational.

EXAMPLE: $\sqrt{10}$ is irrational.

CUBE ROOTS

When we CUBE a number, we raise it to the power of 3.

EXAMPLE: 23 (Read aloud as "two cubed.")

$$2^3 = 2 \times 2 \times 2 = 8$$

The opposite of cubing a number is to take a number's CUBE ROOT. The cube root of a number is indicated by putting it inside a radical sign with a $oldsymbol{3}$ on top, or $oldsymbol{\sqrt{.}}$

EXAMPLE: $\sqrt[3]{8} = 2$

$$\sqrt[3]{8} = 2$$

(Read aloud as "cube root of 8," which equals $2 \times 2 \times 2$.)

EXAMPLE: $\sqrt[3]{27} = 3$

$$\sqrt[3]{27} = 3$$

(Read aloud as "cube root of 27," which equals $3 \times 3 \times 3$.)

$$\sqrt[3]{\frac{1}{125}} = \frac{1}{5}$$

(Read aloud as "cube root of 125," which equals $\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}$.)

When simplifying a cube root, ask yourself, "What number to the third power equals the number under the radical sign?"

Perfect Cubes

Numbers like 8 and 27 are sometimes referred to as PERFECT CUBES. Perfect cubes can also be negative numbers.

EXAMPLE:
$$\sqrt[3]{-8} = -2$$

(Read aloud as "cube root of negative 8," which equals $-2 \times -2 \times -2$.)

EXAMPLE:
$$\sqrt[3]{-1} = -1$$

(Read aloud as "cube root of negative 1," which equals -1 x -1.)

EXAMPLE:
$$\sqrt[3]{-\frac{8}{27}} = -\frac{2}{3}$$

(Read aloud as "cube root of negative $\frac{8}{27}$," which equals

$$-\frac{2}{3} \times -\frac{2}{3} \times -\frac{2}{3}$$
.)

PERFECTER!

IS THAT A WORD?

CHECK YOUR KNOWLEDGE

1. Fill in each missing value:

PERFECT SQUARE	SQUARE ROOT
1	
	±2
9	
	±4
25	
	±6
49	
	±8
81	
	±10

PERFECT CUBE	CUBEROOT
1	
8	
27	

List the cube root of each of the following numbers.

ANSWERS

CHECK YOUR AUSWERS

1.	PERFECT SQUARE	SQUARE ROOT
	1	±1
	4	±2.
	9	±3
	16	±4
	25	±5
	36	±6
	49	±T
	64	<u>±</u> 8
	81	±9
	100	±10

PERFECT CUBE	CUBE ROOT
1	1
8	2
27	3

- 2. -3
- **5.** -5
- 8. <u>2</u> 5

- **3**. 4
- **6.** 0
- **4.** -1
- 7. $\frac{1}{2}$