

There are many different types of numbers with different names. Here are the types of numbers used most often:

WHOLE NUMBERS: A number with no fractional or decimal part. Cannot be negative.

EXAMPLES: 0, 1, 2, 3, 4...

NATURAL NUMBERS: Whole numbers from 1 and up. Some teachers say these are all the "counting numbers."

EXAMPLES: 1, 2, 3, 4, 5...

INTEGERS: All whole numbers (including positive and negative whole numbers).

EXAMPLES: ... -4, -3, -2, -1, 0, 1, 2, 3, 4...

RATIONAL NUMBERS: Any number that can be written by dividing one integer by another—in plain English, any number that can be written as a fraction or ratio. (An easy way to remember this is to think of rational's root word "ratio.")

EXAMPLES: $\frac{1}{2}$, (which equals 0.5), 0.25 (which equals $\frac{1}{4}$),

-7 (which equals $\frac{-7}{1}$), 4.12 (which equals $\frac{412}{100}$),

URRATIONAL NUMBERS: A number that cannot be written as a simple fraction (because the decimal goes on forever without repeating).

("..." MEANSTHATIT CONTINUES ON FOREVER)

EXAMPLES: 3.14159265..., \(\sqrt{2} \)

Every number has a decimal expansion. For example, 2 can be written 2.000... However, you can spot an irrational number because the decimal expansion goes on forever without repeating.

REAL NUMBER5: All the numbers that can be found on a number line. Real numbers can be large or small, positive or negative, decimals, fractions, etc.

EXAMPLES: 5, -17, 0.312, $\frac{1}{2}$, π , $\sqrt{2}$, etc.

Here's how all the types of numbers fit together:

RATIONAL NUMBERS

INTEGERS

WHOLE NUMBERS

NATURAL Numbers IRRATIONAL NUMBERS

EXAMPLE:

-2 is an integer, a rational number, and a real number!

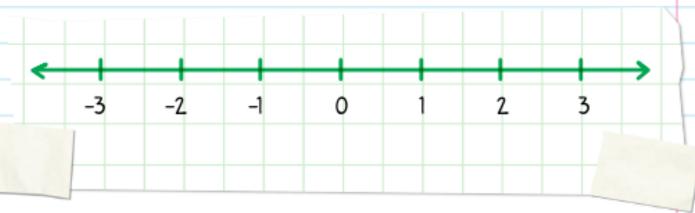
SOME OTHER EXAMPLES:

46 is natural, whole, an integer, rational, and real.

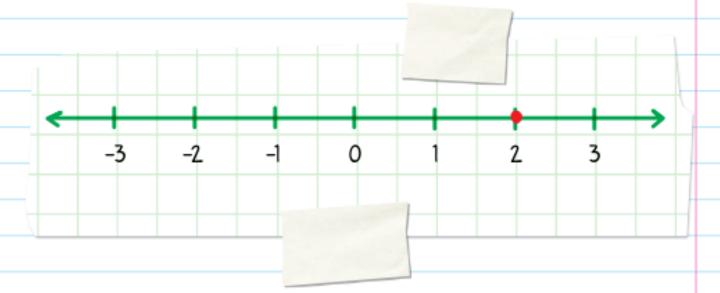
O is whole, an integer, rational, and real.

 $\frac{1}{4}$ is rational and real.

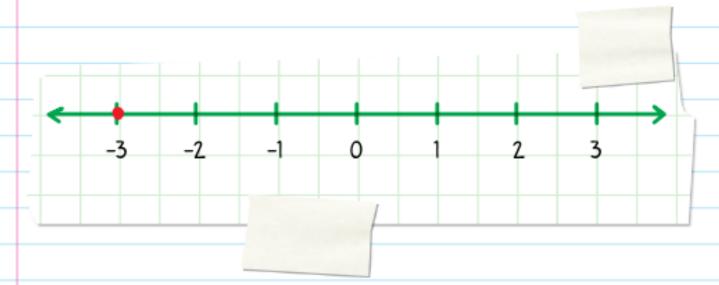
6.675 is rational and real. (TERMINATING DECIMALS or decimals that end are rational.)

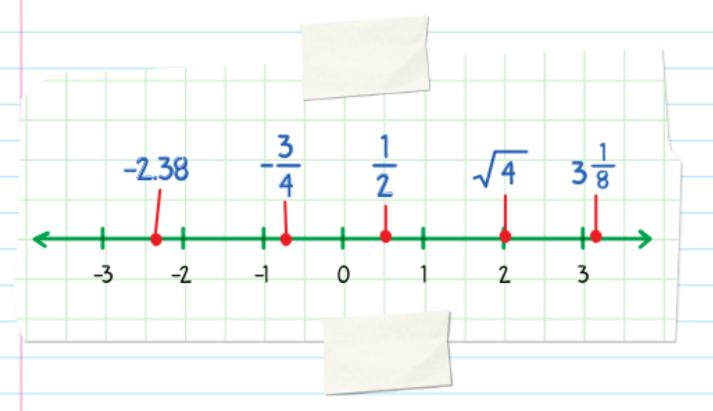

 $\sqrt{5}$ = 2.2360679775... is irrational and real. (Nonrepeating decimals that go on forever are irrational.)

RATIONAL NUMBERS AND THE NUMBER LINE


All rational numbers can be placed on a **NUMBER LINE**.

A number line is a line that orders and compares numbers. Smaller numbers are on the left, and larger numbers are on the right.




EXAMPLE: Because 2 is larger than 1 and also larger than 0, it is placed to the right of those numbers.

EXAMPLE: Similarly, because -3 is smaller than -2 and also smaller than -1, it is placed to the left of those numbers.

line, we can put fractions, decimals, and all other rational numbers on a number line, too:

For 1 through 8, classify each number in as many categories as possible.

- 1. -3
- 2. 4.5
- 3. -4.89375872537653487287439843098...
- **4.** -9.7654321
- 5.
- 6. $-\frac{9}{3}$
- **1**. √2
- 8. 5.678
- 9. Is $\frac{1}{45}$ to the left or the right of 0 on a number line?
- 10. Is -0.001 to the left or the right of 0 on a number line?

ANSWERS

CHECK your ANSWERS

- 2. Rational, real
- 3. Irrational, real
- 4. Rational, real
- 5. Natural, whole, integer, rational, real
- 6. Integer, rational, real (because $-\frac{9}{3}$ can be rewritten as -3)
- 7. Irrational, real
- 8. Rational, real
- To the right
- 10. To the left